|
INVESTIGADOR PRINCIPAL 1: BÀRBARA SEGURA FÀBREGAS
References Section 2.2
[1] W. Poewe et al., “Parkinson disease,” Nat Rev Dis Primers, vol. 3, no. 1, p. 17013, Mar. 2017, doi: 10.1038/nrdp.2017.13.
[2] A. Iranzo, J. Santamaria, and E. Tolosa, “Idiopathic rapid eye movement sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interventions,” 2016. [Online]. Available: http://www.thelancet.com/neurology
[3] R. B. Postuma et al., “Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study,” Brain, vol. 142, no. 3, pp. 744–759, Mar. 2019, doi: 10.1093/brain/awz030.
[4] A. Roguski, D. Rayment, A. L. Whone, M. W. Jones, and M. Rolinski, “A Neurologist’s Guide to REM Sleep Behavior Disorder,” Frontiers in Neurology, vol. 11. Frontiers Media S.A., Jul. 08, 2020. doi: 10.3389/fneur.2020.00610.
[5] A. Campabadal, B. Segura, C. Junque, and A. Iranzo, “Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: A systematic review of studies using neuroimaging software,” Sleep Medicine Reviews, vol. 59. W.B. Saunders Ltd, Oct. 01, 2021. doi: 10.1016/j.smrv.2021.101495.
[6] M. Valli, C. Uribe, A. Mihaescu, and A. P. Strafella, “Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson’s disease,” Journal of Neuroscience Research, vol. 100, no. 10. John Wiley and Sons Inc, pp. 1815–1833, Oct. 01, 2022. doi: 10.1002/jnr.25099.
[7] T. M. Ellmore, A. J. Hood, R. J. Castriotta, E. F. Stimming, R. J. Bick, and M. C. Schiess, “Reduced volume of the putamen in REM sleep behavior disorder patients,” Parkinsonism Relat Disord, vol. 16, no. 10, pp. 645–649, Dec. 2010, doi: 10.1016/j.parkreldis.2010.08.014.
[8] S. Rahayel et al., “Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features,” Cerebral Cortex, vol. 28, no. 2, pp. 658–671, Feb. 2018, doi: 10.1093/cercor/bhx137.
[9] A. Iranzo et al., “Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder,” Ann Neurol, vol. 82, no. 3, pp. 419–428, Sep. 2017, doi: 10.1002/ana.25026.
[10] F. Holtbernd et al., “Convergent patterns of structural brain changes in rapid eye movement sleep behavior disorder and Parkinson’s disease on behalf of the German rapid eye movement sleep behavior disorder study group,” Sleep, vol. 44, no. 3, Mar. 2021, doi: 10.1093/sleep/zsaa199.
[11] A. Campabadal et al., “Cortical gray matter and hippocampal atrophy in idiopathic rapid eye movement sleep behavior disorder,” Front Neurol, vol. 10, no. APR, 2019, doi: 10.3389/fneur.2019.00312.
[12] S. Rahayel et al., “Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder,” Neurology, vol. 90, no. 20, pp. E1759–E1770, 2018, doi: 10.1212/WNL.0000000000005523.
[13] S. Rahayel et al., “Patterns of cortical thinning in idiopathic rapid eye movement sleep behavior disorder,” Movement Disorders, vol. 30, no. 5, pp. 680–687, Apr. 2015, doi: 10.1002/mds.25820.
[14] J. B. Pereira, D. Weintraub, L. Chahine, D. Aarsland, O. Hansson, and E. Westman, “Cortical thinning in patients with REM sleep behavior disorder is associated with clinical progression,” NPJ Parkinsons Dis, vol. 5, no. 1, Dec. 2019, doi: 10.1038/s41531-019-0079-3.
[15] A. Campabadal et al., “Cortical gray matter progression in idiopathic REM sleep behavior disorder and its relation to cognitive decline,” Neuroimage Clin, vol. 28, Jan. 2020, doi: 10.1016/j.nicl.2020.102421.
[16] J. H. Shin et al., “Longitudinal evolution of cortical thickness signature reflecting Lewy body dementia in isolated REM sleep behavior disorder: a prospective cohort study,” Transl Neurodegener, vol. 12, no. 1, Dec. 2023, doi: 10.1186/s40035-023-00356-y.
[17] P. S. J. Weston, I. J. A. Simpson, N. S. Ryan, S. Ourselin, and N. C. Fox, “Diffusion imaging changes in grey matter in Alzheimer’s disease: A potential marker of early neurodegeneration,” Alzheimer’s Research and Therapy, vol. 7, no. 1. BioMed Central Ltd., Jul. 01, 2015. doi: 10.1186/s13195-015-0132-3.
[18] V. Montal et al., “Cortical microstructural changes along the Alzheimer’s disease continuum,” Alzheimer’s and Dementia, vol. 14, no. 3, pp. 340–351, Mar. 2018, doi: 10.1016/j.jalz.2017.09.013.
[19] I. Illán-Gala et al., “Cortical microstructure in the amyotrophic lateral sclerosis-frontotemporal dementia continuum,” Neurology, vol. 95, no. 18, pp. E2565–E2576, Nov. 2020, doi: 10.1212/WNL.0000000000010727.
[20] I. Illán-Gala et al., “Cortical microstructure in the behavioural variant of frontotemporal dementia: Looking beyond atrophy,” Brain, vol. 142, no. 4, pp. 1121–1133, Apr. 2019, doi: 10.1093/brain/awz031.
[21] F. Sampedro, S. Martínez-Horta, J. Marín-Lahoz, J. Pagonabarraga, and J. Kulisevsky, “Longitudinal intracortical diffusivity changes in de-novo Parkinson’s disease: A promising imaging biomarker,” Parkinsonism Relat Disord, vol. 68, pp. 22–25, Nov. 2019, doi: 10.1016/j.parkreldis.2019.09.031.
[22] T. Taoka et al., “Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases,” Jpn J Radiol, vol. 35, no. 4, pp. 172–178, Apr. 2017, doi: 10.1007/s11604-017-0617-z.
[23] M. Nedergaard and S. A. Goldman, “Glymphatic failure as a final common pathway to dementia,” Science, vol. 370, no. 6512. American Association for the Advancement of Science, Oct. 02, 2020. doi: 10.1126/science.abb8739.
[24] W. Zou et al., “Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein,” Transl Neurodegener, vol. 8, no. 1, p. 7, Dec. 2019, doi: 10.1186/s40035-019-0147-y.
[25] Y. Zhang et al., “Interaction Between the Glymphatic System and α-Synuclein in Parkinson’s Disease,” Mol Neurobiol, vol. 60, no. 4, pp. 2209–2222, Apr. 2023, doi: 10.1007/s12035-023-03212-2.
[26] C. D. McKnight et al., “Diffusion along perivascular spaces reveals evidence supportive of glymphatic function impairment in Parkinson disease,” Parkinsonism Relat Disord, vol. 89, pp. 98–104, Aug. 2021, doi: 10.1016/j.parkreldis.2021.06.004.
[27] X. Cai et al., “Diffusion along perivascular spaces provides evidence interlinking compromised glymphatic function with aging in Parkinson’s disease,” CNS Neurosci Ther, vol. 29, no. 1, pp. 111–121, Jan. 2023, doi: 10.1111/cns.13984.
[28] Y. J. Bae et al., “Glymphatic function assessment in Parkinson’s disease using diffusion tensor image analysis along the perivascular space,” Parkinsonism Relat Disord, vol. 114, Sep. 2023, doi: 10.1016/j.parkreldis.2023.105767.
[29] D. A. Lee, H. J. Lee, and K. M. Park, “Glymphatic dysfunction in isolated REM sleep behavior disorder,” Acta Neurol Scand, vol. 145, no. 4, pp. 464–470, Apr. 2022, doi: 10.1111/ane.13573.
[30] Y. J. Bae et al., “Altered Brain Glymphatic Flow at Diffusion-Tensor MRI in Rapid Eye Movement Sleep Behavior Disorder,” Radiology, vol. 307, no. 5, p. e221848, Jun. 2023, doi: 10.1148/radiol.221848.
[31] X. Si et al., “Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease,” NPJ Parkinsons Dis, vol. 8, no. 1, Dec. 2022, doi: 10.1038/s41531-022-00316-9.
[32] G. L. Willis and C. B. Freelance, “Emerging preclinical interest concerning the role of circadian function in Parkinson’s disease,” Brain Research, vol. 1678. Elsevier B.V., pp. 203–213, Jan. 01, 2018. doi: 10.1016/j.brainres.2017.09.027.
[33] P. Gros and A. Videnovic, “Overview of Sleep and Circadian Rhythm Disorders in Parkinson Disease,” Clinics in Geriatric Medicine, vol. 36, no. 1. W.B. Saunders, pp. 119–130, Feb. 01, 2020. doi: 10.1016/j.cger.2019.09.005.
[34] J. Q. Wu, P. Li, K. Stavitsky Gilbert, K. Hu, and A. Cronin-Golomb, “Circadian Rest-Activity Rhythms Predict Cognitive Function in Early Parkinson’s Disease Independently of Sleep,” Mov Disord Clin Pract, vol. 5, no. 6, pp. 614–619, Nov. 2018, doi: 10.1002/mdc3.12692.
[35] K. Weissová et al., “Circadian rhythms of melatonin and peripheral clock gene expression in idiopathic REM sleep behavior disorder,” Sleep Med, vol. 52, pp. 1–6, Dec. 2018, doi: 10.1016/j.sleep.2018.07.019.
[36] H. Feng et al., “Rest-Activity Pattern Alterations in Idiopathic REM Sleep Behavior Disorder,” Ann Neurol, vol. 88, no. 4, pp. 817–829, Oct. 2020, doi: 10.1002/ana.25853.
[37] A. Stefani et al., “Screening for idiopathic REM sleep behavior disorder: Usefulness of actigraphy,” Sleep, vol. 41, no. 6, Jun. 2018, doi: 10.1093/sleep/zsy053.
[38] A. K. Raupach et al., “Assessing the role of nocturnal core body temperature dysregulation as a biomarker of neurodegeneration,” J Sleep Res, vol. 29, no. 5, Oct. 2020, doi: 10.1111/jsr.12939.
[39] C. J. Madrid-Navarro et al., “Validation of a device for the ambulatory monitoring of sleep patterns: A pilot study on Parkinson’s disease,” Front Neurol, vol. 10, no. APR, 2019, doi: 10.3389/fneur.2019.00356.
[40] S. Joza et al., “Progression of clinical markers in prodromal Parkinson’s disease and dementia with Lewy bodies: a multicentre study,” Brain, vol. 146, no. 8, pp. 3258–3272, Aug. 2023, doi: 10.1093/brain/awad072.
[41] C. Leitner et al., “Neuropsychological Changes in Isolated REM Sleep Behavior Disorder: A Systematic Review and Meta-analysis of Cross-sectional and Longitudinal Studies,” Neuropsychology Review. Springer, 2023. doi: 10.1007/s11065-022-09572-1.
[42] L. Plomhause et al., “Impaired visual perception in rapid eye movement sleep behavior disorder,” Neuropsychology, vol. 28, no. 3, pp. 388–393, May 2014, doi: 10.1037/neu0000006.
[43] A. Marques et al., “REM sleep behaviour disorder and visuoperceptive dysfunction: a disorder of the ventral visual stream?,” J Neurol, vol. 257, no. 3, pp. 383–391, Mar. 2010, doi: 10.1007/s00415-009-5328-7.
[44] G. Fiamingo et al., “Neuropsychological evaluation of phenoconversion risk in REM sleep behaviour disorder: A scoping review,” Journal of Sleep Research, vol. 32, no. 5. John Wiley and Sons Inc, Oct. 01, 2023. doi: 10.1111/jsr.13873.
[45] M. Chen et al., “Structural and functional brain alterations in patients with idiopathic rapid eye movement sleep behavior disorder,” Journal of Neuroradiology, vol. 49, no. 1, pp. 66–72, Jan. 2022, doi: 10.1016/j.neurad.2020.04.007.
[46] A. J. Noyce et al., “PREDICT-PD: Identifying risk of Parkinson’s disease in the community: Methods and baseline results,” J Neurol Neurosurg Psychiatry, vol. 85, no. 1, pp. 31–37, 2014, doi: 10.1136/jnnp-2013-305420.
[47] J. P. Bestwick et al., “Improving estimation of Parkinson’s disease risk—the enhanced PREDICT-PD algorithm,” NPJ Parkinsons Dis, vol. 7, no. 1, Dec. 2021, doi: 10.1038/s41531-021-00176-9.
[48] S. Heinzel, D. Berg, T. Gasser, H. Chen, C. Yao, and R. B. Postuma, “Update of the MDS research criteria for prodromal Parkinson’s disease,” Movement Disorders, vol. 34, no. 10. John Wiley and Sons Inc., pp. 1464–1470, Oct. 01, 2019. doi: 10.1002/mds.27802.
[49] D. Berg et al., “MDS research criteria for prodromal Parkinson’s disease,” Movement Disorders, vol. 30, no. 12. John Wiley and Sons Inc, pp. 1600–1611, Oct. 01, 2015. doi: 10.1002/mds.26431.
[50] P. Mahlknecht, K. Marini, M. Werkmann, W. Poewe, and K. Seppi, “Prodromal Parkinson’s disease: hype or hope for disease-modification trials?,” Translational Neurodegeneration, vol. 11, no. 1. BioMed Central Ltd, Dec. 01, 2022. doi: 10.1186/s40035-022-00286-1.
[51] S. M. Fereshtehnejad, Y. Zeighami, A. Dagher, and R. B. Postuma, “Clinical criteria for subtyping Parkinson’s disease: Biomarkers and longitudinal progression,” Brain, vol. 140, no. 7, pp. 1959–1976, Jul. 2017, doi: 10.1093/brain/awx118.
[52] D. Jennings et al., “Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort,” JAMA Neurol, vol. 74, no. 8, pp. 933–940, Aug. 2017, doi: 10.1001/jamaneurol.2017.0985.
[53] A. Iranzo et al., “Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study,” Lancet Neurol, vol. 20, no. 3, pp. 203–212, Mar. 2021, doi: 10.1016/S1474-4422(20)30449-X.
References Section 2.3 an 2.4
[1] S. M. Fereshtehnejad, Y. Zeighami, A. Dagher, and R. B. Postuma, “Clinical criteria for subtyping Parkinson’s disease: Biomarkers and longitudinal progression,” Brain, vol. 140, no. 7, pp. 1959–1976, Jul. 2017, doi: 10.1093/brain/awx118.
[2] S. Heinzel, D. Berg, T. Gasser, H. Chen, C. Yao, and R. B. Postuma, “Update of the MDS research criteria for prodromal Parkinson’s disease,” Movement Disorders, vol. 34, no. 10. John Wiley and Sons Inc., pp. 1464–1470, Oct. 01, 2019. doi: 10.1002/mds.27802.
[3] R. L. Doty, The smell identification testTM administration manual—third ed. Sensonics International , 2017.
[4] D. Berg et al., “MDS research criteria for prodromal Parkinson’s disease,” Movement Disorders, vol. 30, no. 12. John Wiley and Sons Inc, pp. 1600–1611, Oct. 01, 2015. doi: 10.1002/mds.26431.
[5] S. M. Fereshtehnejad, J. Y. Montplaisir, A. Pelletier, J. F. Gagnon, D. Berg, and R. B. Postuma, “Validation of the MDS research criteria for prodromal Parkinson’s disease: Longitudinal assessment in a REM sleep behavior disorder (RBD) cohort,” Movement Disorders, vol. 32, no. 6, pp. 865–873, Jun. 2017, doi: 10.1002/mds.26989.
[6] A. Iranzo et al., “Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study,” Lancet Neurol, vol. 20, no. 3, pp. 203–212, Mar. 2021, doi: 10.1016/S1474-4422(20)30449-X.
[7] I. Litvan et al., “Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines.,” Mov Disord, vol. 27, no. 3, pp. 349–56, Mar. 2012, doi: 10.1002/mds.24893.
[8] R. B. Postuma et al., “MDS clinical diagnostic criteria for Parkinson’s disease,” Movement Disorders, vol. 30, no. 12. John Wiley and Sons Inc, pp. 1591–1601, Oct. 01, 2015. doi: 10.1002/mds.26424.
[9] B. Dubois et al., “Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force.,” Mov Disord, vol. 22, no. 16, pp. 2314–24, Dec. 2007, doi: 10.1002/mds.21844.
[10] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences,” Behav Res Methods, vol. 39, no. 2, pp. 175–191, May 2007, doi: 10.3758/BF03193146.
[11] C. G. Goetz et al., “Movement Disorder Society‐sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS): Scale presentation and clinimetric testing results,” Movement Disorders, vol. 23, no. 15, pp. 2129–2170, Nov. 2008, doi: 10.1002/mds.22340.
[12] M. M. , Y. M. D. , Hoehn, “Parkinsonism: onset, progression and mortality,” Neurology, vol. 17, pp. 427–442, 1967.
[13] J. L. Cummings, M. Mega, K. Gray, S. Rosenberg-Thompson, D. A. Carusi, and J. Gornbein, “The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia,” Neurology, vol. 44, no. 12, pp. 2308–2308, Dec. 1994, doi: 10.1212/WNL.44.12.2308.
[14] A. T. Beck, BDI-II : Beck depression inventory : manual / Aaron T. Beck, Robert A. Steer, Gregory K. Brown. San Antonio (Tex.) [etc.] : Harcourt Brace, 1996. Accessed: Jun. 06, 2019. [Online]. Available: http://discovery.ub.edu/iii/encore/record/C__Rb1488960__S9780158018386__Orightresult__X3;jsessionid=4663457AB4FFA6F7F5CD1E5882151C1F?lang=cat
[15] S. E. Starkstein, H. S. Mayberg, T. J. Preziosi, P. Andrezejewski, R. Leiguarda, and R. G. Robinson, “Reliability, validity, and clinical correlates of apathy in Parkinson’s disease.,” J Neuropsychiatry Clin Neurosci, vol. 4, no. 2, pp. 134–9, Jan. 1992, Accessed: Jul. 07, 2014. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/1627973
[16] K. R. Chaudhuri and P. Martinez‐Martin, “Quantitation of non‐motor symptoms in Parkinson’s disease,” Eur J Neurol, vol. 15, no. s2, pp. 2–8, Sep. 2008, doi: 10.1111/j.1468-1331.2008.02212.x.
[17] B. Frauscher et al., “Validation of the Innsbruck REM sleep behavior disorder inventory.,” Mov Disord, vol. 27, no. 13, pp. 1673–8, Nov. 2012, doi: 10.1002/mds.25223.
[18] D. Weintraub, E. Mamikonyan, K. Papay, J. A. Shea, S. X. Xie, and A. Siderowf, “Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale.,” Mov Disord, vol. 27, no. 2, pp. 242–7, Feb. 2012, doi: 10.1002/mds.24023.
[19] C. Jenkinson, R. Fitzpatrick, and V. Peto, “Health-Related Quality-of-Life Measurement in Patients with Parkinson??s Disease,” Pharmacoeconomics, vol. 15, no. 2, pp. 157–165, 1999, doi: 10.2165/00019053-199915020-00004.
[20] C. Graf, “The Lawton Instrumental Activities of Daily Living Scale,” AJN, American Journal of Nursing, vol. 108, no. 4, pp. 52–62, Apr. 2008, doi: 10.1097/01.NAJ.0000314810.46029.74.
[21] T. Mollayeva, P. Thurairajah, K. Burton, S. Mollayeva, C. M. Shapiro, and A. Colantonio, “The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis,” Sleep Med Rev, vol. 25, pp. 52–73, Feb. 2016, doi: 10.1016/j.smrv.2015.01.009.
[22] M. W. Johns, “Sleepiness in Different Situations Measured by the Epworth Sleepiness Scale,” Sleep, vol. 17, no. 8, pp. 703–710, Dec. 1994, doi: 10.1093/sleep/17.8.703.
[23] J. A. , & O. O. Horne, “A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. ,” Int J Chronobiol, vol. 4, no. 2, pp. 97–110, 1976.
[24] T. Roenneberg, A. Wirz-Justice, and M. Merrow, “Life between Clocks: Daily Temporal Patterns of Human Chronotypes,” J Biol Rhythms, vol. 18, no. 1, pp. 80–90, Feb. 2003, doi: 10.1177/0748730402239679.
[25] S. Heinzel, D. Berg, T. Gasser, H. Chen, C. Yao, and R. B. Postuma, “Update of the MDS research criteria for prodromal Parkinson’s disease,” Movement Disorders, vol. 34, no. 10. John Wiley and Sons Inc., pp. 1464–1470, Oct. 01, 2019. doi: 10.1002/mds.27802.
[26] A. Iranzo et al., “Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study,” Lancet Neurol, vol. 20, no. 3, pp. 203–212, Mar. 2021, doi: 10.1016/S1474-4422(20)30449-X.
[27] D. Farnsworth, “The Farnsworth-Munsell 100-Hue and Dichotomous Tests for Color Vision*,” J Opt Soc Am, vol. 33, no. 10, p. 568, Oct. 1943, doi: 10.1364/JOSA.33.000568.
[28] P. F. W. Ekman, “Pictures of facial affect,” Psychologists Press, Palo Alto, CA (1976).
[29] S. Baron‐Cohen, S. Wheelwright, J. Hill, Y. Raste, and I. Plumb, “The ‘Reading the Mind in the Eyes’ Test Revised Version: A Study with Normal Adults, and Adults with Asperger Syndrome or High‐functioning Autism,” Journal of Child Psychology and Psychiatry, vol. 42, no. 2, pp. 241–251, Feb. 2001, doi: 10.1111/1469-7610.00715.
[30] A. Iranzo et al., “Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder,” Ann Neurol, vol. 82, no. 3, pp. 419–428, Sep. 2017, doi: 10.1002/ana.25026.
[31] M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl, “Within-subject template estimation for unbiased longitudinal image analysis,” Neuroimage, vol. 61, no. 4, pp. 1402–1418, Jul. 2012, doi: 10.1016/j.neuroimage.2012.02.084.
[32] T. Taoka et al., “Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases,” Jpn J Radiol, vol. 35, no. 4, pp. 172–178, Apr. 2017, doi: 10.1007/s11604-017-0617-z.
[33] A. Campabadal et al., “Disruption of posterior brain functional connectivity and its relation to cognitive impairment in idiopathic REM sleep behavior disorder,” Neuroimage Clin, vol. 25, Jan. 2020, doi: 10.1016/j.nicl.2019.102138.
[34] M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: uses and interpretations.,” Neuroimage, vol. 52, no. 3, pp. 1059–69, Sep. 2010, doi: 10.1016/j.neuroimage.2009.10.003.
[35] A. Abos et al., “Disrupted structural connectivity of fronto-deep gray matter pathways in progressive supranuclear palsy,” Neuroimage Clin, vol. 23, Jan. 2019, doi: 10.1016/j.nicl.2019.101899.
[36] R. La Joie et al., “Region-specific hierarchy between atrophy, hypometabolism, and 2-amyloid (Aβ) load in Alzheimer’s disease dementia,” Journal of Neuroscience, vol. 32, no. 46, pp. 16265–16273, Nov. 2012, doi: 10.1523/JNEUROSCI.2170-12.2012.
[37] H. C. Baggio et al., “Statistical inference in brain graphs using threshold-free network-based statistics,” Hum Brain Mapp, vol. 39, no. 6, pp. 2289–2302, Jun. 2018, doi: 10.1002/hbm.24007.
Section 6. 2 Theses completed or in progress within the scope of the research team (last 10 years). Including the associated publications.
*Title: Magnetic resonance imaging, cognition, and sex differences in Parkinson’s disease with REM sleep behavior disorder- Supervisor: Dr.Carme Junqué and Dr.Bàrbara Segura. PhD Student: Javier Oltra. Lecture: 28/10/2022. Publications (4): Oltra et al Frontiers in Aging Neuroscience 2022 13;791532; Oltra et al npj Parkinson’s Disease 2022 8(1):60; Oltra et al Scientific Reports 2021 11(1); Oltra et al 2021 Journal of Neurolgy 269(3):1591-159
*Title: Subtypes in Parkinson’s disease and Dementia with Lewy bodies: MRI and neuropsychological profiles. Supervisor: Dr. Carme Junqué and Dr. Bàrbara Segura. PhD Student: Anna Inguanzo Pons. Lecture; 01/10/2021 Publications (3):Inguanzo et al Parkinsonism Relat Disord 2020 Nov12;82:16-23; Inguanzo et al Brain Connectivity 2021 11(5):380-392; Inguanzo et al NPJ Parkinsons Dis 2023 9(1): 5
*Title: Idiopathic REM sleep behavior disorder and olfactory dysfunction in Parkinson’s disease and premotor stages. MRI and neuropsychological studies. Supervisor: Dr. Carme Junqué and Dr. Bàrbara Segura. PhD Student: Anna Campabadal Delgado. Lecture 8/09/2020 Publications(6): Campabadal et al Neuroimage Clin 2020a;Sep 9;28:102421; Campabadal,et al. Neuroimage Clin 2020b;25:102138; Campabadal et al, Parkinsonism Relat Disord. 2019 Aug; 65:197-202; Campabadal et al., Front Neurol 2019 Apr 5;10:312; Campabadal et al ArcClin Neuropsychol 2019 Jun 1;34(4):435-444; Campabadal et al Parkinsonism Relat Disord 2017 Aug;41:44-50.
*Title: MRI connectomics in movement disorders. Supervisor: Dr. Carme Junqué and DrHugo Baggio. PhD Student: Alexandra Abos. Lecture; 05/07/2019 Publications (5): Abos et al; Sci Rep 2019; 9(1)16488; Abos et al Neuroimage Clin 201923:101899; Abos et al., Neuroimag Clin 2019 22:101720; Abos et al 2018 Hum BrainMapping 2018 2289-2302; Abós A, et al. Sci Rep. 2017 Mar 28;7:45347.
*Title: Cortical atrophy patterns associated to cognitive impairment in Parkinson’s disease.Supervisor: Dr. Carme Junqué and Dr.Bàrbara Segura. PhD Student: Carme Uribe Codesal. Lecture:03/05/2019. CarmeUribe was supported by a fellowship from 2014,Spanish Ministry of Economy and Competitiveness[BES-2014-068173] and co-financed by the European Social Fund (ESF) PSI2013-41393-P. Publications (3):Uribe et al.Parkinsonism Relat Disor 2019 64: 286-292; Uribe et al.,Parkinsonism Relat Disor 2018 May;50:3-9; Uribe C, et al. MovDisord 2016 May;31(5):699-708.
Title:Visuospatial and visuoperceptual impairment and its structural correlates as measures of cognitive decline in Parkinson’s disease. Supervisor:Dr.Carme Junqué and Dr.Bàrbara Segura. PhD Student: Anna Garcia-Diaz. Lecture: 16/02/2018. Publications (3): Garcia-Diaz AI, et al. Parkinsonism Relat Disord. 2018 46; 62-68; Garcia-Diaz AI, et al.JINS 2018; 24:33-44;Garcia-Diazet al 2014(12):1405-10.
*Title: Brain imaging in preterm infants with and without intrauterine growth restrictionSupervisor: Dr. Carme Junqué. PhD Student:Nelly Fabiola Padilla Gomes. Lecture: 05/02/2016. Publications(2):Padilla,etal.Cereb Cortex.2016; Padilla N,et al.Brain Res.2014 Jan30;1545:1-11.
* Title: Multimodal MRI study of human brain connectivity: cognitive networks. Supervisor:Dr. Carme Junqué. PhDStudent: Roser Sala Llonch. Lecture 13/01 2015. Roser Sala was supported by a fellowship from the Spanish Ministry of Science and Innovation (RS- L:BES2011-047053) and the project (PSI2010-16174). Publications (5): Sala-Llonch et al Font Psychol 2015; 6:663; Sala-Llonch et al Neurobiol Aging 2014 35:2193202; Sala Llonch et al From Hum Neurosci 2012;6:152; Sala-Llonch et alCerebralCortex 2012;1187-96; Sala-Llonch et al;J Alzheimer Dis 2010; 22(2)523-39.
* Title: Brain Connectivity and cognitive impairment in Parkinson’s disease. Supervisor: Dr.Carme Junqué. PhD Student: Hugo Cesar Baggio. Lecture 06/10/2014 Publications (7): Baggio et al. J Cogn Neurosci. 2015 Sep; 27(9):1801-10. Baggio, et al. Mov Disord. 2015 15;30(5):671-9. Baggio, et al. Hum Brain Mapp. 2015 Jan; 36(1):199-212. Baggio HC, et al.Hum Brain Mapp.2014 Sep;35(9):4620-34. Segura,et al.JNNP 2013 Apr; 84(4):370-8; Ibarretxe-Bilbao etal., MovDisord 2012 Dec;27 (14):1746-53; Baggio HC, et al.Neuropsychologia. 2012 Jul;50(8):2121-8.
* Title: Functional and structural correlates of cognitive impairments in schizophrenia isorder and brain effects of cognitive remediation therapy. Supervisor: Dr. Carme Junqué and Rafael Penadés. PhD Student: Nuria Pujol. Lecture 29/11/2013 Publications (3): Pujol et al. Br J Psychiatry. 2014 Nov;205(5):369-75. Pujol et al. Psychiatry Res. 2013 Nov 30;214(2):94-101. Penadés, Pujol et al. Biol Psychiatry. 2013 May 15;73(10):1015-23.
*Title: Structural and functional connectivity alterations and their relationship with cognitive impairment in traumatic brain injury. Supervisor: Dr. Carme Junqué. Ph.D. Student: Eva M Palacios Martínez. Lecture 31/05/2013. Publications (4): Palacios et al. JAMA Neurol. 2013 Jul;70(7):845-51. Palacios EM, et al. Cortex. 2013 Mar;49(3):646-57. Palacios EM, et al. Neurology. 2012 Mar 20;78(12):852-60. Palacios EM, et al. BMC Neurol. 2011 Feb 23;11:24
